

Welcome to django-plugins’s documentation!

Introduction

django-plugins will help you to make your Django app more reusable. You
will be able to define plugin points, plugins and various ways, how plugins can
be integrated to your base app and extended from other apps providing plugins.

The idea for django-plugins was taken from Marty Alchin blog [http://martyalchin.com/2008/jan/10/simple-plugin-framework/], for in
deep understanding about how this plugin system work, read Marty Alchin
blog [http://martyalchin.com/2008/jan/10/simple-plugin-framework/].

Features

	Synchronization with database.

	Plugin management from Django admin.

	
	Model fields:

	
	PluginField

	ManyPluginField

	
	Form fields:

	
	PluginChoiceField

	PluginModelChoiceField

	PluginMultipleChoiceField

	PluginModelMultipleChoiceField

	Possibility to include plugins to urls.

	Possibility to access plugins from templates.

	Many ways to access plugins and associated models.

Use case

django-plugins can be used in those situations where instances of your
particular model can behave differently.

For example, you have one Node model:

class Node(models.Model):
 title = models.CharField(max_length=255)
 body = models.TextField()

This model stores basic information for news, articles and other possible
content types. Each different content type has different forms, different
templates for displaying and listing content.

To implement all this, you simply can use django-plugins:

class Node(models.Model):
 title = models.CharField(max_length=255)
 body = models.TextField()
 content_type = PluginField(ContentType)

Then in your views.py you do:

@render_to('create.html')
def node_create(request, plugin):
 return {'form': plugin.get_form()}

@render_to('update.html')
def node_update(request, plugin, node_id):
 node = get_object_or_404(Node, pk=node_id)
 return {'form': plugin.get_form(instance=node)}

@render_to()
def node_read(request, node_id):
 node = get_object_or_404(Node, pk=node_id)
 plugin = node.content_type.get_plugin()
 return {
 'TEMPLATE': plugin.get_template(),
 'plugin': plugin,
 'node': node,
 }

How to use it in your app?

All plugin points and plugins live in plugins.py file in your django app
folder.

Example how to register a plugin point:

from djangoplugins.point import PluginPoint

class MyPluginPoint(PluginPoint):
 """
 Documentation, that describes how plugins can implement this plugin
 point.

 """
 pass

Example, how to register plugin, that implements MyPluginPoint, defined
above:

class MyPlugin1(MyPluginPoint):
 name = 'plugin-1'
 title = 'Plugin 1'

class MyPlugin2(MyPluginPoint):
 name = 'plugin-1'
 title = 'Plugin 2'

All plugins must define at least name and title attributes. These
properties are used everywhere in plugin system.

	name

	This is a slug like name, used in urls and similar places.

	title

	Any human readable title for plugin. Value of this attribute will be shown
to users everywhere.

Database

All defined plugins and plugin points are synchronized to database using Django
management command syncplugins or syncdb. syncdb should be always
enough, but some times, if you added or changed plugins code and need to update
those changes to database, but don’t want anything more, then you should use
syncplugins management command.

When added to database, plugins can be ordered, disabled, accessed from Django
admin, etc.

syncplugins command detects if plugins or plugin points where removed from
code and marks them as REMOVED, but leaves them in place. If you want to
clean up your database and really delete all removed plugins us --delete
flag.

Utilizing available plugins

There are many ways how you can use plugins and plugin points. Out of the box
plugins are stored as python objects and synchronized to database called plugin
models.

Each plugin is linked to one record of djangoplugins.models.Plugin
model. Plugins provides all login, plugin models provides all database
possibilities, like sorting, searching, filtering. Combining both we get
powerful plugin system.

Plugin classes are hardcoded and cannot be modified by users directly. But
users can modify database instances linked to those hardcoded plugins. Thats
why you should always trust database instances, but no hardcoded plugins,
because users can change some thing in database and expects to see those
changes in his web site.

Plugin and plugin models, both has name and title attributes, but you
should always use these attributes from model instances, but not from plugins.

Here is example to illustrate this:

BAD:

plugin = MyPlugin()
print(plugin.title)

GOOD:

plugin = MyPlugin()
if plugin.is_active():
 print(plugin.get_model().title)

As you see, in GOOD example, we also check if a plugin is active. Users can
enable or disable plugins using admin. Thats why you should always check if a
plugin is active, before using it. Using methods like get_plugins and
get_plugins_qs you will always get only active plugins. So checking if
plugin is active is needed only if you working with particular plugin, bet not
with all plugins of a point.

get_plugins method of each plugin point class and plugin point model
instance, returns list of all active plugin instances.

Example, how to use it:

from my_app.plugins import MyPluginPoint

@register.inclusion_tag('templatetags/actions.html', takes_context=True)
def my_plugins(context):
 plugins = MyPluginPoint.get_plugins()
 return {'plugins': plugins}

templatetags/actions.html:

 {% for plugin in plugins %}
 plugin.title
 {% endfor %}

If you need to sort or filter plugins, you should always access them via Django
ORM:

from my_app.plugins import MyPluginPoint

@render_to('my_app/my_template.html')
def my_view(request):
 return {
 'plugins': MyPluginPoint.get_plugins_qs().order_by('name')
 }

Model fields

You can tie your models with plugins. Using example below, plugins can be
assigned to model instances:

from django.db import models
from djangoplugins.fields import PluginField
from my_app.plugins import MyPluginPoint

class MyModel(models.Model):
 plugin = PluginField(MyPluginPoint)

Also there is ManyPluginField, for many-to-many relation.

PluginField

	
class PluginField(point[, **options])

	

This field is simply foreign key to Plugin model.

Takes one extra required argument:

	
ForeignKey.point

	Plugin point class.

ManyPluginField

	
class ManyPluginField(point[, **options])

	

Takes one extra required argument, point, as for PluginField.

Form fields

It’s easy to put your plugin point to forms using set of plugin fields for
forms:

from django import forms
from djangoplugins.fields import (
 PluginChoiceField, PluginMultipleChoiceField,
 PluginModelChoiceField, PluginModelMultipleChoiceField,
)
from my_app.plugins import MyPluginPoint

class MyForm(forms.Form):
 # Two fields below provides simple ChoiceField with choices of plugins.
 choice = PluginChoiceField(MyPluginPoint)
 # This field currently disabled:
 # http://code.djangoproject.com/ticket/9161
 #multiple_choice = PluginMultipleChoiceField(MyPluginPoint)

 # These two fields below provides ModelChoiceField with queryset of
 # plugis.
 model_choice = PluginModelChoiceField(MyPluginPoint)
 model_multiple_choice = PluginModelMultipleChoiceField(MyPluginPoint)

PluginChoiceField

	
class PluginChoiceField(**kwargs)

	
	Default widget: Select

	Empty value: '' (an empty string)

	Normalizes to: Plugin object.

	Validates that the given value is valid plugin name of specified plugin
point.

	Error message keys: required, invalid_choice

This field can be used, when you want to validate if a string is valid plugin
name and that plugin belongs to specified plugin point.

Also this field normalizes to plugin object instance, but not to plugin model
instance.

Takes one extra required argument:

	
PluginChoiceField.point

	Plugin point class.

PluginMultipleChoiceField

Note

Currently this field is disabled due bug in Django:

http://code.djangoproject.com/ticket/9161

	
class PluginMultipleChoiceField(**kwargs)

	
	Default widget: SelectMultiple

	Empty value: [] (an empty list)

	Normalizes to: A list of Plugin objects.

	Validates that every value in the given list of values is valid plugin
name of specified plugin point.

	Error message keys: required, invalid_choice, invalid_list

Takes one extra required argument, point, as for PluginChoiceField.

PluginModelChoiceField

	
class PluginModelChoiceField(**kwargs)

	
	Default widget: Select

	Empty value: None

	Normalizes to: A Plugin model instance.

	Validates that the given id is plugin id of specified plugin point.

	Error message keys: required, invalid_choice

Takes one extra required argument, point, as for PluginChoiceField.

PluginModelMultipleChoiceField

	
class PluginModelMultipleChoiceField(**kwargs)

	
	Default widget: SelectMultiple

	Empty value: [] (an empty list)

	Normalizes to: A list of Plugin model instances.

	Validates that every id in the given list of values is plugin id of
specified plugin point.

	Error message keys: required, list, invalid_choice,
invalid_pk_value

Takes one extra required argument, point, as for PluginChoiceField.

Urls

django-plugins has build-in possibility to include urls from plugins. Here
is example how this can be done:

from django.conf.urls.defaults import patterns
from plugins.utils import include_plugins
from my_app.plugin_points import MyPluginPoint

urlpatterns = patterns('wora.views',
 (r'^plugin/', include_plugins(MyPluginPoint)),
)

include_plugins function will search get_urls and name attributes
in all plugins, and if both are available, then provided urls will be included.

Example plugin:

class MyPluginWithUrls(MyPluginPoint):
 name = 'my-plugin'
 title = 'My plugin'

 def get_urls(self):
 return patterns('my_app.views',
 url(r'create/$', 'create', name='my-app-create'),
 url(r'read/$', 'read', name='my-app-read'),
 url(r'update/$', 'update', name='my-app-update'),
 url(r'delete/$', 'delete', name='my-app-delete'),
)

With this plugin, plugin point inclusion will provide these urls:

/plugin/my-plugin/create/
/plugin/my-plugin/read/
/plugin/my-plugin/update/
/plugin/my-plugin/delete/

Plugin points are better place to define urls. Here is example, how all this
can be done:

class MyPluginPoint(PluginPoint):
 def get_urls(self):
 return patterns('my_app.views',
 url(r'create/$', 'create',
 name='my-app-%s-create' % self.name),
)

class MyPlugin1(MyPluginPoint):
 name = 'my-plugin-1'
 title = 'My Plugin 1'

class MyPlugin2(MyPluginPoint):
 name = 'my-plugin-2'
 title = 'My Plugin 2'

class MyPlugin3(MyPluginPoint):
 name = 'my-plugin-3'
 title = 'My Plugin 3'

From all these plugins, these urls will be available:

/plugin/my-plugin-1/create/
/plugin/my-plugin-2/create/
/plugin/my-plugin-3/create/

In templates all these urls can be added using these url names:

{% url my-app-my-plugin-1-create %}
{% url my-app-my-plugin-2-create %}
{% url my-app-my-plugin-3-create %}

Templates

You can access your plugins in templates using get_plugins template tag.:

{% load plugins %}
{% get_plugins my_app.plugins.MyPluginPoint as plugins %}

 {% for plugin in plugins %}
 {{ plugin.title }} {{ plugin.get_plugin.plugin_class_attr }}
 {% endfor %}

In example above, get_plugins returns ordered queryset of plugin models,
but not plugins directly.

Using plugins with Django ORM

It is possible to use plugins with Django ORM.

If your model has plugin field, you can:

from my_app.models import MyModel
from my_app.plugins import MyPlugin

plugin_model = MyPlugin.get_model()

qs = MyModel.objects.\
 filter(name='name', plugin=plugin_model).\
 order_by('plugin__order')

qs = MyModel.objects.filter(plugin__name='email')

As mentioned above, you can get queryset of all plugins from a plugin point
easily:

count = MyPluginPoint.get_plugins_qs().count()

How to get all plugins?

There are two ways, how you can get all plugins of a plugin point:

MyPluginPoint.get_plugins()

and:

MyPluginPoint.get_plugins_qs()

First example returns plugins directly in random order. Second example returns
Django queryset with plugin models ordered by order field.

How to get model instance of a plugin?

In example below are listed all possible ways, how you can get model instance
of a plugin.

plugin = MyPlugin()

Get model instance from plugin instance.
plugin_model = plugin.get_model()

Get model instance from plugin class.
plugin_model = MyPlugin.get_model()

Get model instance by plugin name.
plugin_model = MyPluginPoint.get_model('my-plugin')

Get model instance of a plugin point:
plugin_point_model = MyPluginPoint.get_model()

get_model method can raise ObjectDoesNotExist exception, so you should
check it:

try:
 plugin_model = MyPlugin.get_model()
except MyPlugin.DoesNotExist:
 plugin_model = None

How to get plugin from a model instance?

Easy:

plugin = plugin_model.get_plugin()

Why another plugin system?

Currently these similar projects exists:

	django-app-plugins [http://code.google.com/p/django-app-plugins/] - template oriented, pretty complete, but totally
undocumented. Project is not active and bugs are fixed only in forked
repository django-caching-app-plugins [https://bitbucket.org/bkroeze/django-caching-app-plugins/].

	django-plugins [https://github.com/alex/django-plugins] - template oriented, small project. Plugins are uploaded
through Django admin.

Also there is a lot of articles and code snippets, that describes how plugin
system can be implemented. Here is article, that most influenced this project:

	http://martyalchin.com/2008/jan/10/simple-plugin-framework/

Also see list of other articles and python plugin system implementations:

	http://wehart.blogspot.com/2009/01/python-plugin-frameworks.html

None of these projects fully provides what I need:

	Good documentation.

	Plugins and plugin points should be provided by Django apps, not only by
single uploaded files.

	Plugins should not be restricted by file names, then can be registered
anywhere, like Django signals.

	Plugins should be synchronized with database, and plugin point can be used as
fields.

Index

 M
 | P

M

 	
 	ManyPluginField (built-in class)

P

 	
 	PluginChoiceField (built-in class)

 	PluginField (built-in class)

 	PluginModelChoiceField (built-in class)

 	
 	PluginModelMultipleChoiceField (built-in class)

 	PluginMultipleChoiceField (built-in class)

 	point (ForeignKey attribute)

 	(PluginChoiceField attribute)

 nav.xhtml

 Table of Contents

 		Welcome to django-plugins's documentation!

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

